报 告 题 目:Some inequalities on Riemannian manifolds linking Entropy, Fisher information, Stein discrepancy and Wasserstein distance
主 讲 人:程 丽 娟
单 位:杭州师范大学
时 间:11月23日3:00
腾 讯 ID: 256-987-382
摘 要:
In this talk, we will introduce some inequalities linking relative entropy, Fisher information, Stein discrepancy and Wasserstein distance, which extend the so-called Entropy/Stein-discrepancy/Information (HSI) inequality established by Ledoux, Nourdin and Peccati (2015) for the standard Gaussian measure on Euclidean space to the setting of Riemannian manifolds. To these ends, two types of Hessian-gradient estimates of heat semigroup are established by probabilistic method.
简 介:
程丽娟,现为杭州师范大学数学鱼虾蟹游戏
副教授。2014年6月博士毕业于北京师范大学,2016年9月至2020年9月在卢森堡大公国卢森堡大学从事博士后研究。主要从事流形上随机微分方程及其应用等领域的研究,在J. Funct. Anal.、Analysis & PDE、J. Geom. Anal.、 Electron. J. Probab.、Stochastic Process. Appl.、Potential Anal.、J. Math. Anal. Appl.、Bull. Sci. Math.、J. Theoret. Probab.和Sci. China Math.等国内外期刊发表论文20余篇。